
Dromion can be remote-controlled

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 3325

(http://iopscience.iop.org/0305-4470/31/14/017)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 3325–3336. Printed in the UK PII: S0305-4470(98)88587-9

Dromion can be remote-controlled

Naoki Yoshida†¶, Katsuhiro Nishinari‡, Junkichi Satsuma§ and Kanji Abe‖
† Department of Mechanics, Royal Institute of Technology, Osquars backe 18, 100-44
Stockholm, Sweden
‡ Department of Mechanical Engineering, Faculty of Engineering, Yamagata University, Jonan,
4-3-16, Yonezawa-shi, Yamagata 992, Japan
§ Department of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo
153, Japan
‖ College of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153,
Japan

Received 20 October 1997

Abstract. The one-dromion solution of the Davey–Stewartson 1 equations with driving
boundaries is analysed numerically. It is shown that the dromion can follow the motion of
the crosspoint of the mean flows even if it is not of exact solutions. Moreover, it is found that
the localized structure keeps its shape when it is exposed to the ‘forced’ motion of the mean
flows. In the case where dromion runs on a circle path, the decay ratio of the localized structure
versus the radius is given. Several types of movement of mean flows are also studied. It is
expected that dromion can be controlled arbitrarily by driving mean flows at the boundaries.

1. Introduction

Recently the localized structure in the two-dimensional system described by the Davey–
Stewartson (DS) 1 equations [1]

iAt + Axx + Ayy − 2|A|2A+ 2QxA = 0 (1)

Qxx −Qyy = 2(|A|2)x (2)

has been attracting a good deal of interest. The localized structure, called ‘dromion’ [2],
has many interesting characteristics. For example, the variableA, hereafter called the main
flow, is localized in two-dimensional space while the variableQ, hereafter called the mean
flow, is not. Another interesting feature is that the mean flow is driven at the boundaries
like a one-dimensional soliton [3]. We shall give exact formulae describing this boundary
condition in section 2. Dromion exists under the interaction between the main flow and
mean flows. This feature produces a stimulating question. Can dromion be controlled
arbitrarily if we handle the mean flow boundaries?

Since the DS1 equations appear in several branches of physics, such as fluid dynamics
[4] and plasma physics [5], these localized structures are worth being analysed in detail.
So far collisions of dromions [6] and time evolution of one-dromion [7] have been studied
numerically. Many other behaviours of dromions, however, still remain veiled. The purpose
of this paper is to investigate in detail how dromions behave when we drive mean flows at
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the boundary, that is, the position is forced to move in a certain way. In this situation it is
expected that dromions follow the motion of the crosspoint of mean flows in view of the
fact that the crosspoint plays a significant role as an attracting spot. We employ numerical
computation to study the behaviour of dromions.

This paper is organized as follows. In section 2, we summarize the dromion solution
of the DS1 equations. In section 3, we introduce another form of the DS1 equations and
propose a new numerical scheme. Computational results are given in section 4. Concluding
remarks are given in section 5.

2. The one-dromion solution

Let us summarize the one-dromion solution of the DS1 equations. In equations (1) and (2),
making a 45◦ rotation in the coordinate space asx → x + y, y → x − y, and introducing
new variables,U ≡ Qx − |A|2, V ≡ Qy − |A|2, we obtain

iAt + Axx + Ayy + (U + V )A = 0 (3)

Uy = (|A|2)x Vx = (|A|2)y. (4)

The one-dromion solution is expressed as

A = ρ exp(η1+ η2)

1+ exp(η1+ η∗1)+ exp(η2+ η∗2)+ γ exp(η1+ η∗1 + η2+ η∗2)
. (5)

In equation (5), parameters are given by

|ρ| = 2
√

2kr lr (γ − 1)

η1 = (kr + iki)x + (�r + i�i)t

η2 = (lr + ili)y + (ωr + iωi)t

�r = −2krki ωr = −2lr li
�i + ωi = k2

r + k2
i + l2r + l2i

whereγ, kr , ki, lr and li are real constants. These five are substantially free parameters of
the one-dromion solution. The constantγ determines an amplitude,kr is the width of the
pulse in thex-direction, andlr in the y-direction. The quantitieski and li are x and y
components of velocity, respectively.

The potentialsU and V are determined simply by integrating equation (4). For the
dromion solution, boundary values of potentialsU andV are not zeros, but are given in
the form of one-dimensional soliton by

U |y=−∞ = 8k2
r exp(η1+ η∗1)

[1+ exp(η1+ η∗1)]2
(6)

V |x=−∞ = 8l2r exp(η2+ η∗2)
[1+ exp(η2+ η∗2)]2

. (7)

One should be aware from equation (5) that the main flowA has a peak at the cross
section of mean flowsU andV , and that its peak decays exponentially in any direction in
two-dimensional plane. Boundary conditions (6) and (7) play an important role on handling
the one-dromion, which will be discussed in section 4.
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3. Numerical scheme to solve the DS1 equations

As we see in equations (1) and (2), the time evolution of mean flowQ is not given explicitly.
It is given nonlinearly and implicitly through the main flowA. This nature causes some
difficulties in computation.

To make equation (2) easier to solve numerically, we split equation (2) into two first-
order hyperbolic systems. We put

Q̂ = Qx +Qy. (8)

Then equation (2) is written as

Q̂x − Q̂y = 2(|A|2)x (9)

from which we obtain a conserved form

Q̂y − (Q̂− 2|A|2)x = 0. (10)

Next, by differentiating equation (8) byx, we obtain

(Qx)y + (Qx − Q̂)x = 0 (11)

which is also in a conserved form.
Introducing an appropriate scale transformation and puttingQ̂ = B, Qx = C, the DS1

equations (1) and (2) are rewritten as

iAt + Axx + Ayy + (2C − |A|2)A = 0 (12)

By − (B − |A|2)x = 0 (13)

Cy + (C − B)x = 0. (14)

Although these equations look more complicated than the original ones, they are in a
convenient form for numerical simulations.

Next we briefly explain the numerical method for solving the initial-boundary problem
of the DS1 equations. If the main flowA is given at one moment and the outer boundary
conditionsB|y=−∞ andC|y=−∞ are designated.

(i) The wave equation (13) is solved fromB|y=−∞ for the givenA, to obtain the value
of B on the whole area.

(ii) The wave equation (14) is solved fromC|y=−∞ with the calculated value ofB, to
obtain the value ofC on the whole area.

(iii) By using the value ofA and the value ofC calculated in procedure (ii), the time
integration of equation (12) is performed, which gives the value ofA at the next time step.

We adopt the second-order-upwind TVD method [8] to solve the wave equations (13) and
(14). Time integration of equation (12) is performed by the Jameson–Baker method [9]. The
spatial derivatives in equation (12) are calculated by the fourth-order central descritization.
The grid system is generated by standard square lattices and the computational domain is
chosen to be sufficiently large. On the main flowA, we fix the dumping area very near the
boundaries to absorb ripples emitted from dromions [6]. We adopt the periodic boundary
condition on mean flowsB andC in the x-direction because their values decay rapidly to
zeros. Practically this scheme needs only one boundary aty = −∞.

4. Computational results

First, we simulate the exact one-dromion solution in order to see the accuracy of this scheme.
In this computation, we takekr = lr = 4

5, ki = li = 1
5 andγ = 3 as dromion parameters.
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We checked the maximum amplitude of|A|2 and the first conserved quantity of the DS1
equations,

I1 =
∫
|A|2 dx dy.

The maximum fluctuation of amplitude of|A|2 is 3% of the total value. These
fluctuations are caused when the peak of dromion precisely hits the vertex on the
computational domain. The maximum fluctuation ofI1 is 1I1/I1 ∼ 10−10. From these
results, we may say that this scheme is appropriate to calculate dromion solutions.

Our intention is to clarify whether or not dromions propagate stably under the condition
that boundaries are driven to move irregularly. We apply two types of movement of
boundaries, which are listed in table 1 with figure 1. The interesting one is the case in
which we drive boundaries in such a way that the crosspoint of mean flows moves on a
circle path. In order to realize this situation, we employ the following boundary conditions
for potentials;U |y=−∞ varying as a function of sin(wt), andV |x=−∞ varying as a function

Table 1. Forced movement of boundaries described as the function of sin(ωt) and cos(ωt) in
the power index of exp(η) (equations (6) and (7)).

Path of the
Name x-direction(η1 + η∗1) y-direction(η2 + η∗2) meanflow crosspoint

Revolution kr (x + �r
kr

sin(wt)) lr (x + ωr
lr

cos(wt)) Figure (a)
Lissajous kr (x + �r

kr
sin(wt)) lr (x + ωr

lr
sin(2wt)) Figure (b)

Figure 1. Sketches of the motions in table 1. The mean
flow crosspoint is driven to move on these curves in the
direction indicated by arrows.
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Figure 2. Solid profiles of|A|2 in the case of the revolutional dromion. (a) t = 0.0: initial
state, (b) t = 2.0: 1

5 rotation, (c) t = 4.0: 2
5 rotation, (d) t = 6.0: 3

5 rotation, and (e) t = 8.0:
4
5 rotation. Dromion is kept localized through the rotation.
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Figure 2. (Continued)

of cos(wt). That is, the power index in exp(η) is replaced by

krx +�rt → kr

(
x + �r

kr
sin(wt)

)
(15)

lry + ωrt → lr

(
y + ωr

lr
cos(wt)

)
(16)

in equations (6) and (7). Then the crosspoint of mean flows rotates around the original
point. A simplified sketch is shown in figure 1(a). We shall now discuss the obtained
results in detail. Figure 2 shows solid profiles of the main flow. At timet = 0, both the
main flow and the mean flow are set to be exact solutions. Then the mean flow is forced
to move at the boundary as explained above. In the results, surprisingly, we see that the
dromion keeps its shape and propagates quasistably along the circle. In order to show how
much localized volume is preserved and what amount of the original structure is emitted as
ripples, the variation of the dromion volume is presented in figure 3. Dromion volume is
estimated as,

W =
∫
s

|A|2 dx dy
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Figure 3. Time variation of the volume of the localized structureV = ∫
s
|A|2 dx dy. The

horizontal axis is scaled to show the time of revolution.

Figure 4. Pathline of the mean flow crosspoint. Dots indicate the position of the main flow
peak.

where integral domains is chosen sufficiently narrow as to contain only the localized
structure at the mean flow crosspoint. In figure 3 we can see that the value decreases
gradually at the beginning, but then does not change substantially. It is interesting to note
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Figure 5. Decay ratio of dromion volume versus the radius of the circle. The decay ratio is
normalized by the initial volume of dromion. As the radius becomes larger, the decay ratio
approaches the value 1.0.

that the dromion volume remains almost steady after it loses some amount. The reason can
be explained as follows. In the beginning, the dromion becomes smaller by emitting ripples,
which may be caused by the accelerated motion of the mean flow crosspoint. The exact
one-dromion propagates at a constant velocity on a straight path, with no acceleration. It
keeps its shape and volume perfectly. In the case of revolving dromion, however, it tends
to move with the mean flow crosspoint running on a circle path. When dromion is forced
to move on any curve, this effect by the crosspoint acts as perturbation. Therefore the
balance is broken, which is preserved completely in the case of the exact one dromion, and
the dromion reduces its volume, which as a consequence flows away as ripples. Once the
dromion reaches a quasistable state, it keeps its shape and propagates almost stably following
the motion of the mean flow crosspoint. It should be remarked that the dromion keeps its
shape even if it is exposed to the condition apart from the exact solution. We performed
computations up to five times revolution and observed that the localized structure always
kept its dromion-like shape. Even though the mean flows continues to give perturbation
on the dromion, the volume decreases only at the beginning and the system reaches a
quasistable state afterwards. Paths of the mean flow crosspoint and the peak of dromion
are presented in figure 4. We see that the dromion is completely captured at the mean flow
crosspoint. As discussed in the preceding papers, this feature also indicates an important
role of the mean flows as an attracting force.

It is likely that the volume of the rotating dromion has a relation to the radius of the
mean flow motion. To clarify this relation, we performed several computations keeping the
velocity of motion at a constant value. That is, we varied the radiusr and angular velocity



Dromion can be remote-controlled 3333

Figure 6. Solid profiles of|A|2 in the case of the Lissajous motion. (a) t = 0.0: initial state,
(b) t = 2.0: 1

4 period, (c) t = 4.0: 2
4 period, (d) t = 6.0: 3

4 period, and (e) t = 8.0: 1 period.
Dromion runs on a Lissajous curve keeping its localized structure.

ω while keepingv = rω at a constant value. Under this condition, we calculated the decay
ratio of the dromion volume after one revolution on a circle path. The relation between
the decay ratio and the radius of circle path is shown in figure 5. It can be seen that the
ratio of the dromion volume gets closer to the value 1.0 as the radius of the path becomes
larger. This feature is reasonable because in the limitr → ∞ the system is described by
the exact one-dromion solution. In contrast, when the radius becomes smaller, the forced
movement of the crosspoint gives a considerable effect on dromion. It emits more ripples
and becomes thinner.
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Figure 6. (Continued)
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Figure 7. Pathline of the mean flow crosspoint. Dots indicate the position of the main flow
peak. Both are on the Lissajous curve. The dromion perfectly follows the motion of the mean
flow crosspoint.

In order to see whether the change in the orbit of mean flow crosspoint affects the
behaviour of dromion or not, we performed a numerical computation in which the crosspoint
moves on a Lissajous curve. This situation is realized by replacing cos(wt) with sin(2wt) in
equation (16). The curve shape is presented in figure 1(b). From figure 6 and also figure 7,
we see that the dromion still follows the motion of the mean flow crosspoint and keeps its
shape after emitting a certain amount of ripples.

5. Concluding remarks

We give two concluding remarks.
(i) A conserved form of the DS1 equations is obtained and a new method for numerical

analysis is proposed. By comparing the computational results with the exact solution, the
accuracy of the new scheme is proved to be an appropriate one.

(ii) Some behaviours of dromions with driving mean flows at the boundaries are
investigated by applying the scheme. Through the calculations, the stable propagation of
dromions under particular conditions are observed. It is possible to remote-control dromions
from the boundaries by forcing the boundary values to move appropriately.

As for the second conclusion, it has been shown in [5] that an electrostatic ion wave,
which propagates perpendicularly to fixed magnetic field, is well described by the DS1
equations. Therefore it is probable that the electrostatic potential of the ion wave is localized
in two-dimensional space with the shape of a dromion, and that the mean current of the ion
plays a role of the mean flow. In conclusion, if it is possible to control dromions from the
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boundaries, there is also the possibility of transporting the energy of the ion wave along a
curved path to arbitrary places by arranging the boundary conditions. Moreover, we can
estimate the remained volume of dromion in the case that the path is a simple circle.
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